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We modify the method of minimal normal forms to treat cl&crete maps rather than 
continuous differential equations. We start with a general description of the 
nature and aims of the method, then give a simple non-trivial example, followed 
by a general scheme. Various models are used to discuss some of the constraints 
imposed by the need for symplecticity. 



1 Introduction 

In an accelerator withmany components, it is very cumbersome and time consuming to calculate 

the transfer map of each component in a long-term tracking study. Instead, the concept of the one- 

turn map [l] was proposed to both improve the precision of the calculation and to save computing 

time. In calculating the one-turn map, the condition of symplecticity, and higher order effects, 

and convergence are of paramount importance. Here, a new method is proposed to improve the 

convergence of the calculation. Its comparison with other methods will be given in a later report. 

, 

I 

We present a progress report on work done on applying the method of “minimal normal forms” 

to discrete maps. The method is adapted from that developed for use with differential equations 

by Kahn and Zarmi [2]. However, for accelerators, or, specifically, synchrotrons and storage rings, 

we are more interested in applications to maps, especially the one-turn map. In this report, we 

start with a general description of the nature and aims of the method. To make the statements 

more precise and visualizable, we then give a simple but nontrivial example. We then present the 

general scheme, and we use it to treat more complicated models. At the end, we discuss some of 

the consequences of the symplectic condition, i.e. the implications for the minimal normal form 

method. Throughout this report, we shall only treat one coordinate and one momentum variable, 

i.e. a two dimensional phase space. The method will be extended to cover a four or six dimensional 

phase space in a later report. 

0 

2 General Remarks 

The method of minimal normal forms is a lliethod for solving nonlinear equations of motion, 

originally developed for use with differential equations, but obviously it has applications to particle 

tracking. It is hoped, but not proved, that the method has advantages over other techniques, e.g. 

a larger radius of convergence in terms of the strength of the nonlinearities. In this section we give 

a brief description of the procedure. The general scheme will be given later in this report. Suppose 

we have a coordinate-momentum pair ( z , p ) ,  and, in the absence of nonlinearities, they satisfy the 
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one-turn relation 

- sinp cosp n 

0 

0 

with an obvious notation. We define z = z: + ip, so that zn+l = A Z n ,  with X = e-ip. We now write 

the more general equation of motion as 

zn+1 = x + E Z ~ ( . Z ~ ,  z:) + E ~ z ~ ( z ~ ,  2:) + * * .  

00 

= zn + EkZk(Zn, z:) (2) 
k = l  

where E is the “small parameter” which charactel;izes the strength of the nonlinearities. (If there 

are several small parameters, we scale them all by E for now, and worry about a multi-parameter 

expansion later.) The functions Zk are homogenous polynomials of degree k + 1 in z and z*, and 

we define 

Z k ( Z , % * )  = zpqzpz*q ,  
p+q=L+1 

so that, for example, 

(3) 

etc. We now introduce the normal form variable u, for which we hope to get a “simple” equation 

of motion, via 
co 

( 5 )  z = u + E T ~ ( U ,  u*) + - - - = u + ek T ~ ( u ,  u*) . 
k=l  

As with the &, the Tk are homogenous polynomials of degree k + 1, but in the variables u and u*, 

and we deiine 

T~(u,u*) = T , , U ~ U * ~ .  
p+q=k+l 

To borrow some terminology from matrices, u is the variable in terms of which the one-turn map 

is “diagonalized”. The next step is to specify a procedure to determine the Tpq. We substitute Eq. 

(5) into Eq. (2), using also Eqs. (3) and (6). This gives an equation for u,+1 in terms of u, and 

u,+1 = xu, + O(E) + O(E2) + * * * (7) 
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We then choose the Tp4 to cancel as many terms on the r.h.s. of Eq. (7) as possible. This will be 

made more precise below. It turns out that this fixes most, but not all, of the Tpq. Extra criteria 

have to be set to determine the remaining so-called "free terms". The terms which remain on the 

r.h.s. above yield the equation for un+l. We shall see below that they have the form u'flu*', 

yielding an equation of the form 

0 

The "free terms", i.e. the undetermined Tpq, are of the form Tk+l k, i.e. the coefficients of u'+*u* ' 
in Eq. (6). It would be nice if we could choose the free terms to make the 0 2 k  all vanish, but 

unfortunately this turns out to be not possible, so instead we choose the free terms to make the 

series on the r.h.s. above add up to an oscillating exponential series, viz. 

/ 

where k is a real constant, which in fact equals -ic2/X. Ifthis can be achieved, then the solution 

for u, can be obtained in closed form: 

with p constant and 

i.e. 

a 

un = p exp -in ( p  - E2kp2) + i $o]  , (12) 

which implies an amplitude dependent tuneshift. Substitution into the transformation from z to u 

then gives the solution for the original variables an and Pn. 

3 Sextupole Map 

The above discussion was purely abstract. We make it more concrete by solving a special 

example, one well known to all accelerator physicists, viz. a one-turn linear map plus one thin-lens 
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sextupole., Without loss of generality, the equation of motion is 

In terms of z, this reads 
* * 2  i e  

4 A & + -  ( k , + X  z , )  . %+I = 

To O(E), we have z = u +  ET^, and substituting into Eq. (14), we obtain 

We want all the O(E) terms to vanish, which yields the solutions 

i 1  To2 = --- i 1  Tl1 = -- - i x  
4 A - - 1 '  2 x - 1 '  4 A 3 - 1 '  

T20 = - - 

after a little algebra. The equation of motion for is thus un+l = X un + O(e2) ,  with no term of 

O ( E ) .  At the next order, we put z = u + €2'1 + c2T~,  and calculate T30, 2'21, T12 and To3. We find 

that 

i E2 
u,+1 + E'TJ(XU,, X * U ~ )  = ( 2 1  + E~TZ(TJ,,U;)) + 7 (Xu, + x*u:)(XT1+ X*T,*) (18) 

which leads to 

e2 [ (A3 - X)T30u3 + (A - X)T21u2u* 

+(A* - X ) T ~ ~ U U * ~  + - X)T03uW3] = 2 i E2 [u3 ( X2T20 + T,*,) 

+u2u* ( X2Tii + T;I*I + T20 + A* 2T02 ) 

+UU* ( X2T02 + T& + T11+ A* 2TTl ) 

+ u * ~  (2'02 + x*2T&)] . (19) 
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The next step is to calculate T3 and T4. As with T21, we find that all the Tpq can be determined 

There is no need to write out T4 explicitly. The object of principal interest is c4, the second 

term in the exponential series for the amplitude dependent tuneshift, the coefficient of u ~ u * ~ .  We 

find 

X ( AT22 + X*T,*, ) + A* ( AT31 + X*T:3 ) 

+( AT20 + X*T'2 ) ( AT12 + A*Tli ) + ( AT11 + A*",*, ) ( AT21 + A*T:2 ) 

+( AT02 + X"T& ) ( AT30 + X*T;3 ) - 2X IC T2l . ( 2 5 )  1 
The problem facing us is: can we somehow adjust this so that (1) u d / X  is purely real, and (2) it 

then fits to the exponential series, i.e. Re(@d/X) = -k2/2? 

We have, at our disposal, the free function T21.  It could not be used to control 0 2 ,  but we 

see now that it can be used to control 04. This feature will persist, i.e. the free functions cannot 

be constrained at the lowest order of perturbation theory at which they appear, but they can be 

determined by using them to control higher order 321~ terms. The way we exercise this control is 

the key feature of the minimal normal form method. 
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Returning to 64, we discover three remarkable and significant facts. The first is that only the 

real part of T21 appears in 64/& the second is that it only appears in the imaginary part of g,i/A: 0 

where k is the same constant that appeared in 6 2 .  Hence only the real part of 2'21 is constrained 

by 64 - to constrain Im(T21) we shall have to go to 06 - and, more importantly, we have no 

control over the real part of 04/X: we are unable to adjust it to equal -k2/2 as desired. This is 

the third remarkable fact: Re(64/X) equals -k2/2 without any adjustment: the above expression 

for 64$ when simplified, yields / 

I 

IC2 ik 
- -- + - (T21+ Til) + (imaginary) . u4 _ -  x 2 8  

Hence everything is all right, we use Re(T21) to hake I m ( 6 4 / A )  vanish, and proceed to i76. At 

that point, we find the following: (1) only Re(Z''2) appears in 66, and only in the imaginary part 

of c6/A, but Im(T21) appears in the real part of i?f~/X,  so we have enough degrees of freedom to 

control g6 completely. Similarly, we determine Im(T'2) and Re(T'3) by adjusting the value of 08, 
and so on for all the other 6 2 k .  

We have thus established that it is indeed possible to choose the Tps, in particular the free 

functions, to yield a simple equation for u,, which can be solved exactly (in closed form), reducing 

' 0 

the effects of the nonlinearity to an amplitude dependent tuneshift. In so doing, we discovered 

two significant difficulties, which fortunately were non-problems in the above example: we had no 

control over 6 2  and Re( 64/X), and had to hope that 6 2 / X  was pure imaginary, and Re( 64/X) was 

, 

equal to (1/2)(32/A)2. Both hopes were fulfilled. If the minimal normal form method is to work 

in general, though, it must be verified that 0 2  and Re(64/X) behave as desired. The matter will 

be discussed again below, in the section on symplecticity. 

' 

4 General Formalism 

Having given a concrete example and illustrated the application of the technique and some 

of its unresolved problems, we now give the general implementation of the minimal normal form 

8 

1 



method for discrete maps. We start with an equation of the form 

m 

k=l 

with 

and we put 

with 
k 

T k  = T p q ~ p ~ * q .  
p+q=k+l 

We substitute into the equation of motion for z, and collect terms in powers of E ,  to obtain 

with new monomials 

NI, = N p q ~ p ~ * q .  (33) 
p+q=k+l 

0 This can be performed quite easily using a symbolic manipulator program, or using differential 

algebra. We then postulute that the equation for un+l is 

- 
where k = -iUZ/X is assumed to be real (recall that we have no control over 62). Using this ansats, 

we find that 

' 

8Tpq ( X p - q  - X 1 u P d q  = E ~ N ~ ~ u ~ u * ~  

I .  p+n=k+l 1-21 

The solution, except for the free terms (those for which p - q = l ) ,  is 

r !  Tp-1- q-1- 

1-21 

(35) 

(36) 

9 



It is understood that the sum over T terminates when the indices reach zero or negative values. 

Formally, we simply set all such Tp-rq-r to zero. The free functions are determined by requiring 

that the terms in the series expansion for the equation for u,+1 add up to the complex exponential 

exp( i2 k unuz). 

0 

When expressed in this concise form, all that remains is to supply the values of the Zpq. Every- 

thing else follows automatically. As explained in the previous section, though, this disguises some 

unresolved problems about our ability to obtain the desired exponential series; Anyway, armed 

with the above general formalism, we can now treat more complicated (more “realistic”) models. 

5 FODOCell 

5.1 General 

A good model to  study is a FODO cell, made up of thin lenses, with some nonlinear elements. 

A sketch of the cell is shown below in Fig. 1. 

Fig. 1 Thin lens FODO cell with two nonlinear elements. 

The cell consists of half a focusing quadrupole, with focusing strength L f / 2 ,  a drift of length I, 
a defocusing quad of strength - led,  another drift of length 1 and half a focusing quadrupole of 

strength k f / 2 .  This has the advantage that the ends of the cell are symmetry points of the lattice. 
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Thin lens nonlinear elements, e.g. sextupoles, are placed immediately after the quadrupoles, as 

0 indicated. The map is given by 

n 
(37) 

where 

which yields, with the usual notation, 

a =  0 ,  

p s i n p  = 1 ( 2 + k d l ) ,  

sin p k f l  1 - COSP 

1 '  
ysinp = - = (1-T) 

P (39) 

The conjugate momentum is p = ax f p x '  = Px'. In terms of x and p ,  we recover the usual rotation 

matrix 

6 with 

- sinp cosp 

5.2 Sextupoles 

If the nonlinear elements are two sextupoles, with strengths E s f  and --E S d  respectively, so that 

Ax = 0 and A d  = f S f , d Z 2  respectively, then the map is 

where the dots denote the linear terms. This yields the following equation for z = x + ip: 

l 2  t i E S d p C  [Czn+C*z,-  -(zn+2,)2 2 
i EsfpX E S j l  

Zn+l = XZ, - - ( Z t  . 
4 
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Here C is a constant given by 
kfl 1 c = I - - -  
2 $ 

i E sfpx 
%,+I = xz, - - ( z  t %*)2 . 4 

(44) 

and has the property C = C* A. 

If we put Sd = 0, then the map reduces to 

(45) 

This has almost the form treated earlier. If we put z = Xw, then we find 
i 

i E s j p  
(46) xw,--(xw,+x*w;)2 4 Wn+1 = 

which is exactly the form of the equation already solved above, with E -+ - - ~ s f P .  Hence we can 

transcribe the solution of that problem to this model. 

If we put sf = 0 instead, we obtain the equation 

0 This time we use the transformation Xw = Cz,  which yields 

Using the relation C = C* A, we deduce that C2 = CC*X, so C2/X = CC*, hence 

and so the equation is again of the type treated earlier, with E --.t E S d P  CC*. 

Hence, if there is only one sextupole, it is unnecessary to solve the problem afresh; we can read 

off the solution for un and the Tpq from above. If both sextupoles are present, then there is no 

simple transformation to bring the equation into the idealized form treated earlier; in particular, 

there are cubic and quartic terms in the nonlinearity, i.e. O ( E ~ )  and O(&) terms. 

Use of the general formalism presented above enables us to attack the problem in a systematic 

fashion. Nevertheless, it is too tedious to write out the solution analytically by hand; instead a 
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computer program was written to evaluate the Np, and Tps, and the tuneshift parameter k; given 

the Z,, as input. The program was run with several different values of p, ~ f ,  and Sd,  and it was 

verified that, in all cases, k = 4 6 2 / A  was real, and Re(64/A) = -k2/2. It was also verified that 

only Re(T21) appeared in 04, and it only affected lin(D4/A)& This is an “empirical” argument; it 

would be good to have an analytical proof. A symbolic manipulator program would presumably 

be able to handle the task easily. Such work is under way; it will be reported elsewhere. 

e 

5.3 Sextupoles and Octupoles 
/ 

Now that we have both a general formalism and a numerical program to implement it, nothing 

stops us from treating other nodnear mdtipoles. If we use a sextupole sf and an octupole Od, we 

get a map of the form 

The program again indicates that the 0 2 k  behave as desired. There is no point in studying more 

multipoles; the minimal normal form method seems to work, and it is now more important to 

investigate more fundamental issues, specifically, why does it work? w h y  do the @2k behave in a 

“nice” way? 

6 Syrnplecticity 

6.1 General 

The distinguishing feature of the maps of interest to accelerator physicists is that they are sym- 

plectic. Otherwise the maps could be completely arbitrary. A symplectic map preserves the value of 

the Poisson Bracket: [z,, p,] = 1, or [z,, 41 = -2i, independent of n. Let us therefore investigate 

the constraints imposed by the symplectic condition. This turns out to be a big undertaking; we 

shall therefore only scratch the surface of this subject below. 

Let us first verify that the maps studied previously really are symplectic. Let us consider a map 
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of the form 

(51) 
* N  z,+1 = X Ztl + iE( A%, + Xz, ) , a 

where N is any integer. Any global constants in the perturbation can be absorbed into E, as long 

as they are real, because we assume that E is real. Then 

(52) 
%;+l = A* %; - k( A%, + A%,) * N  , 

and so. 

[&+1,4+1] = AX*[.%, Z ; ] - - E [ x z , , ' ( X % , + f % , )  * N  ]+ i4Xz ,+Xz , )  * N  , X . 4  

= [ %,, f ]  - k [  A%, + A*%;, (Xz, + Xz3)rJ]. (53) 

The last term vanishes for arbitrary N ,  which shows that the Poisson Bracket is indeed preserved: 

[ %+1, 4 + 1  I = r. Zn, z; I * (54) 

Clearly, the map will be symplectic if the nonlinearity is any polynomial or power series in Xz, + 
A*%:, with real coefficients. In particular, this establishes that the cubic (Duffing) map studied by 

Kahn and Zarmi [3] is symplectic. @ 

6.2 Quadratic Perturbation 

Let us now proceed in the opposite direction. Let us assume that the map is of the form 

&+1 = [ %, + E & ]  ( 5 5 )  

where we have scaled out X from the whole r.h.s. for convenience. We demand that the map be 

symplectic and see what this implies for the Zpq. Recall that 

21 = + Z11%%* + Z"2%*2, ( 5 6 )  

and we shall drop the subscript n for clarity. Then 

[zn+1, .;+I 1 = [ z ,  %*I + 4% z;] - E [  I*, 21 1 + E2 [ 21, z;]. (57) 
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I 

I All terms beyond the first must vanish exactly, not merely to some high power of E. The O(E) term 

implies that 

0 = [ z, 220%*2 + 211zz* + 2 0 2 " 2 ]  - [ z*, 2,,z2 + 211zz* f 2 0 2 % * 2 ]  

= [ z, z* I { ( z;, + 2220 ) z 4 ( 211 + 22;" ) I* } . 

which requires that 

211 = -22&.  

The O(e2) term implies that i 

This leads to two independent but compatible constraints 

The overall conclusion is that 

2 2 0  = -q,/2,  2 0 2  = -2,2,/(22;,). 

and so 

Transforming via Xw, = i2tlz,, we obtain 

i e  
2 

Awn + - (Xw, + X*w;)2. Wn+1 = 

This is of the form studied above, where it is known that both 02 and 0 4  behave properly. We have 

therefore shown that the requirement of symplecticity forces these functions to have the properties 

we desire. 
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6.3 Cubic Perturbation 

To study a general nonlinearity is difficult, at the present stage of development of this work; 

Let us consider another homogenous polynomial perturbation, viz: 

zn+l = [ zn + c 2 ~ 2 ]  , 

where 

We obtain, similarly to before, 

and demand that all the higher order terms vanish. At O ( c 2 ) ,  this implies 

This yields the two independent constraints e 

The O ( 8 )  term implies 

All of these conditions leave us with only two independent parameters. We can put 221 = ik, where 

k is arbitrary but real, and then we can put 2 1 2  = i k  eiQ, where 6 is also arbitrary but real. It then 

follows that Z30 = i k  e i Q / 3  and ZO3 = ik ei2'/3. We then deduce that 
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Putting xw = e-iQ/2z transforms this to 

which is the form of the equation treated in Ref. [3], where it was shown that 02 and 0 4  behave 

as desired. The constant b above is the tuneshift parameter: 

(73) U,+I = XU, exp( i e2ku,ui ) .  

We have, as stated above, only scratched thei surface of the question of symplecticity, but we 

have managed to show that, for nonlinearities consisting of homogenous polynomials of degrees two 

and three, the symplectic condition forces 6 2  and 64 to have the behavior required for the minimal 

normal form method to work. It is, however, reasonable to expect that the symplectic condition 

will force 6 2  and 64 to behave properly in more general cases. Thus the success (and validity) of 

the general formalism presented above, for applying the minimal normal form method to maps, is 

not fortuitous. 

0 7 Conclusion 

We have described the application of the minimal normal form method to discrete maps, stud- 

ied a specific model analytically, developed a general formalism to apply the method, written a 

computer program to implement it, and indicated some of the outstanding unresolved problems 

(unproved foundations) of the method. Evidence has been presented that the symplectic condition 

is the key which secures those foundations, and guarantees the success of the method. Admittedly, 

no graphs or plots have been presented in this report to show how well the analytical results, to 

a given order of E, actually approximate the exact solution (particle tracking output). Such work 

will be reported at a later date. 

There are other outstanding unresolved problems, basically concerned with more practical mat- 

ters: since it is of course a perturbation theoretic technique, is the method any better than others 

already available in the literature? We can at least say that in this method, we are able to obtain a 

I 
! 
I 

I 
j 
I 
I 

i 
I 
I 
I 
I 
I 

1 
I 

I 
I 

i 

i 

i 
I 
i 

j 

i 

I 
I 

I 

! 

I 
I 

I 

I 
I 

I 

! 

i 
i 
i 

I 
I 

1 
I 

I 
1 
i 

I 

i 
I 

! 

I 

I 

i 

i 

I 

I 

I 

I 

I 
i 

i 
I 
! 

17 



closed form solution for the normal form variable u. Hence, to obtain a solution for e and p to high 

orders in E, we only need to calculate the transformation function from x = 2 t ip to u (the T,, 
coefficients) to higher powers of E. In other methods, there is no closed form solution, in general, 

for the diagonalized map, and so we need to calculate both the transformation function and the 

solution, of the diagonalized map, to higher and higher orders in E; 

a 
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